Inverses of Relations and Functions

In many problems, we want to simplify an expression or a relation by "undoing" an operation.

Example: Solve the equation $5 \sqrt{x+3}=10$

In this section we study inverses of functions and in many contexts, the process of "undoing" is a matter of applying the inverse of a function.

If R is the relation given by
$R:\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots\left(a_{\mathrm{n}}, b_{\mathrm{n}}\right) \ldots\right\}$
Then the inverse of \boldsymbol{R}, denoted R^{-1}, is given by
$R^{-1}:\left\{\left(b_{1}, a_{1}\right),\left(b_{2}, a_{2}\right),\left(b_{3}, a_{3}\right), \ldots\left(b_{\mathrm{n}}, a_{\mathrm{n}}\right) \ldots\right\}$

Example: Determine the inverse of the $y=2 x$ and then graph it on the axis below.

Definition:
A function f is said to be one-to-one if for all $a \neq b$ then $f(a) \neq f(b)$

In other words, a function is one-to-one if there are no output values that are used more than once for a given function.

Examples of one-to-one functions:
$f:\{(2,1)(3,4)(7,12)(9,8)\}$
g :

$h: h(x)=2 x+3$

Examples of functions that are not one-to-one:

$$
F:\{(2,1)(3,4)(7,12)(9,4)\}
$$

$G:$

$$
H: H(x)=x^{2}+3
$$

The Horizontal Line Test:
A function is one-to-one if and only if any horizontal line would intersect the graph in at most one place.

The inverse f^{-1} of a function f is also a function if and only if f is one-to-one.

How to find an inverse of a function that is defined as an algebraic equation.

1. If necessary, replace $f(x)$ with y.
2. Switch all x 's and y 's
3. Solve for y.
4. Replace y with $f^{-1}(x)$

Example:

Find the inverse of $h(x)=\sqrt[3]{\frac{x}{2}}$

Example:
Find the inverse of the function $f(x)=\frac{3 x+2}{x+1}$

Theorem:
The functions f and g are inverse functions if and only if $(f \circ g)(x)=x$
and
$(g \circ f)(x)=x$

Example:
Show that the function $f(x)=\frac{x^{3}}{3}$ and $g(x)=\sqrt[3]{3 x}$ are inverses

The graph of the equation $y=h(x)$ is shown below. On the blank graph provided, draw the graph of the equation $y=h^{-1}(x)$.

